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Abstract   

The real-time implementation of controls in nonlinear systems remains one of the great 

challenges in applying advanced control technology.  Often, linearization around a set point is 

the only practical approach, and many controllers implemented in hardware systems are simple 

proportional-integral-derivative (PID) feedback mechanisms.  To apply Pontryagin’s principle or 

Bellman’s equation using conventional hardware and algorithms for high dimensional nonlinear 

systems requires more computing power than is realistic.  The success of linear control theory, 

especially certainty equivalence and linear-quadratic-Gaussian (LQG) approaches, leads us to 

hope for additional gains from fully nonlinear controls.  The work under this Phase II SBIR 

involves an innovation in computational nonlinear control that offers ground breaking potential 

for real-time control applications, making fully nonlinear problems solvable with the 

computational efficiency of linear problems.  

This report details the development of integrated hardware-software solutions implementing 

max-plus arithmetic for efficient solution of nonlinear control problems.  We have developed 

nonlinear controls for a complex perimeter patrol problem posed by Air Force Research Lab 

personnel.  Our general nonlinear control software package is in beta testing. 
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1.0 Executive Summary 

Control problems arise in response to the need to achieve desired performance.  Applications 

range from satellite orbit insertion to high energy laser tracking and pointing to design of 

influence operations, and technologies on which the Air Force relies commonly require careful 

attention to control objectives.  Common control problems include maintaining a specific range 

of operation (stabilization) or driving the system from one state to another (steering), but many 

applications naturally produce optimization problems, in which we seek maximum information, 

minimum resource expenditure, minimum time to task completion, or maximum profit. 

The mathematical theory of optimal control operates with two fundament objects: a 

mathematical model of the system’s dynamics, and a performance criterion or objective we seek 

to optimize. Models of system dynamics range from simple discrete dynamical systems to 

ordinary and partial differential equations to Markov chains and processes and stochastic 

differential equations.  In many cases models are derived from physical principles (Newton’s 

laws, lift and drag, conservation of mass and momentum), mechanistic considerations 

(susceptibility and contact rates in epidemics), while empirical model designs are useful in many 

cases as well.   

The primary challenges we have attacked in this effort involve nonlinearity and uncertainty. The 

control of linear systems is well understood, and a wide variety of techniques exist for designing 

controllers for linear systems.  Many systems of interest in demanding aerospace and defense 

applications exhibit nonlinear dynamics.  In some cases, one can apply controllers designed 

through linear techniques that perform well under a reasonable range of operating conditions.  

When pushing the envelope of performance, operating a system in a nonlinear regime may be 

crucial. Toward that end, we have focused on a set of computational techniques suitable for 

approaching a broad spectrum of nonlinear problems. 

Stochasticity represents additional challenges in nonlinear systems. The difficulties of designing 

control strategies are compounded by uncertainties in dynamics and measurements.  

Linearization, coupled with the separation principle, provides the most commonly used tool for 
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stochastic control. The tools we have developed are well-suited to handling uncertainty in a very 

different way. 

Computation remains a key complication for nonlinear control. Linearizing the dynamics around 

a set point, trajectory, or equilibrium of interest, is often the only satisfactory approach.  Some 

problems admit a transformation of variables that will change the system into a linear one, but 

the requirements on the dynamical system limit this to a few specific applications.  Gain 

scheduling algorithms are often coupled with linearizations, applying the appropriate linear 

feedback for a given operating regime.  In some cases, these controllers are augmented with 

adaptive schemes to adjust the plant model on-line to enhance the linearized feedback gain 

controls.  In recent years, H techniques have been applied to improve robustness against 

perturbations.  In nearly every case, however, these approaches involve linear approximations. 

Nonlinear approaches are typically based on one of two technologies: Pontryagin’s maximum 

principle and dynamic programming.  The former is essentially a Lagrange multiplier approach 

to control as an abstract constrained optimization. Generally Pontryagin’s solution is an open 

loop control strategy.  A further complication is that the two-point boundary value problem that 

results from its application can be a numerical challenge. 

Dynamic programming, on the other hand, can lead to feedback controllers, but its computational 

cost has proven quite high.  Most numerical approaches arise from consideration of the 

Hamilton-Jacobi-Bellman PDE that is derived from the dynamic programming principle.  The 

value function that solves this PDE provides access to the optimal control in terms of the state.  

Here we apply numerical approximation directly to the dynamic programming principle, 

bypassing the PDE approach.  Our numerical algorithms rely on mathematical techniques 

designed specifically for a key feature of dynamic programming: we redefine arithmetic in order 

to make the dynamic programming principle a linear equation.  That arithmetic framework is the 

max-plus algebra. This approach allows us to solve the dynamic programming equation as a 

linear problem in a different computational paradigm, thereby computing nonlinear controls 

economically. 
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Dynamic programming also provides a paradigm for the treatment of stochasticity, a problem 

that is quite difficult for Pontryagin’s maximum principle to handle.  Using max-plus arithmetic, 

we have an additional modeling tool for uncertainty in max-plus probability.  Here we consider 

both traditional and max-plus stochastic approaches to control of uncertain systems. 

In this report, we detail our work in developing max-plus methods for deterministic and 

stochastic control, along with our hardware/software partnerships for efficient computation.  

Personnel involved in the effort include 

1. Yun Wang, PhD, Principal Investigator 

2. Ben G. Fitzpatrick, PhD, Senior Scientist 

3. Matthew Laffin, MS, Research Assistant 

4. Kristin Holmbeck-Cannell, Research Assistant 

5. Gang “George” Yin, PhD, Senior Scientist (WSU) 

6. Araz Hashemi, MS, Research Assistant (WSU) 

7. Le Yi Wang, PhD, Senior Scientist (WSU) 

Publications resulting from this effort are as follows: 

1. Hashemi, A., B. Fitzpatrick, L.Y. Wang, and G. Yin “Robust noise attenuation under 

stochastic noises and worst-case unmodeled dynamics,” to appear in International 

Journal of Systems Science. 

2. B. G. Fitzpatrick, K. Holmbeck-Cannell, M. Laffin, and Y. Wang. “Optimal Perimeter 

Patrol via Max-Plus Probability,” to appear in 2014 Proc ACC. 

3. Hashemi, A. “Adaptive stochastic systems: estimation, filtering, and noise attenuation,” 

PhD dissertation, Wayne State University Department of Mathematics. 
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2.0 Nonlinear Optimal Control Problems 

We begin the discussion of our max-plus technology with an overview of nonlinear control 

problems.  Generally speaking, the two main ingredients of a control system are the dynamic 

model and the control objective.  With respect to the dynamic model, control problems take 

many forms, but there are two primary types of categorizations: discrete vs. continuous dynamics 

and deterministic vs. stochastic dynamics.   

A deterministic dynamical system is often modeled with a difference equation, such as 

00 )()),(),(()1( xtxtutxftx       (2.1) 

in which the system under control propagates at discrete time steps.  The variable x denotes the 

state of the system, while the variable u denotes the control input.  The system is initially in the 

state  at time  , and we wish to influence the system to behave in a desired manner by choosing 

the control over a time interval    Control objectives are typically set as running costs that are 

measured over the entire period of operation and final time costs that penalize or reward the 

ultimate state: 

))(())(),((),,(
1

0

0000 f

N

k

txktuktxLtxuJ 




 ,    (2.2) 

a functional that is to be maximized over the vector of possible control actions.  A number of 

possible solution approaches may be taken, from “brute force” multivariate optimization to 

dynamic programming, the latter providing the basis of the work described herein.   

Bellman’s principle of dynamic programming relies on the value function, which is defined as 

 ),,(max),(
)(

txuJxtV
u 

 ,       (2.3) 

which provides the optimal value of the cost functional under initial condition x at time t. The 

principle of dynamic programming is this: whatever the initial state, the remaining decisions 
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must be optimal for the state that results from the first control decision. Mathematically, this 

statement becomes 

 )))(),((,1(),(max),(
)(

tutxftVuxLxtV
tu

 ,    (2.4) 

in which the value function inside the max represents the optimality of the future control after 

that initial decision.  With (2.4), the control problem is reduced to a backward iteration from the 

final time value function of )(),( xxtV f  .  At each time step and for each state, the optimal 

control at that time is determined by this recursion.  Thus, the efficient computation of the value 

function is a key issue for the dynamic programming approach to optimal control. 

For continuous time problems, we formulate the dynamics with a differential equation, which we 

take to be of the form 

00 )(),,( xtxuxfx  ,      (2.5) 

modeling the system of interest. The second ingredient is the control objective given by 

))(())(),((),,(

0

00 f

t

t

txdttutxLtxuJ

f

  ,     (2.6) 

which is to be maximized over the set of admissible control functions, ).,(),( 0

2

0 ff ttLttUu   

Solution of this problem typically takes one of two routes: constrained optimization relying on 

Pontryagin’s maximum principle, or dynamic programming relying on the Bellman equation. 

The use of Pontryagin’s principle, which is essentially the application of Lagrange multiplier 

methods for the constrained optimization problem of maximizing the objective in the presence of 

the dynamical system model constraint, continues to prove very difficult for real-time 

computation.  The approach relies on the necessary condition that, if (x
*
, u

*
) denotes the optimal 

system state and control input pair, then they satisfy the equations 
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0)()),(),(())(),((

)()),(),(( 00




















fttutx
x

L
tutx

x

f

dt

d

xtxtutxf
dt

dx




,   (2.7) 

a two-point boundary value problem.  The function u
*
 is the maximizer of the Hamiltonian at 

each time: 

 ))(),(()())(),((maxarg)( tutxLttutxftu T

u

    for each t.   (2.8) 

The problem, then, is to solve the pair of differential equations, one of which runs forwards in 

time, the other of which runs backwards, while at each time maximizing the Hamiltonian to 

determine the optimal control value.  Numerical methods for this problem range from the simple 

shooting method to more sophisticated spectral and pseudospectral methods.  A drawback to this 

method is that the resulting control is purely open loop: the control function is determined as a 

function of time and not state. 

Applying dynamic programming in the continuous time case again requires the value function, 

which is defined in a manner similar to the discrete situation: 

 ),,(max),( 0000 txuJxtV
Uu

 .      (2.9) 

The idea of dynamic programming in the continuous setting is that the optimal cost over a time 

period [t, t f] comprises the optimal cost over a short subinterval [t, s] together with the optimal 

cost from s to t f.  To formalize this concept, we first denote the solution of the differential 

equation by ),,;( 00 uxtx  .  Bellman’s equation is then 









 
s

t

uytsxsVduuytxLytV )),,;(,())(),,,;((max),(  ,   (2.10) 

in which s and t are times satisfying t < s. We include the dependence of the state trajectory on 

the initial time, initial state, and control.  Dynamic programming in continuous time backs up 

from the final time to the initial time by repeatedly solving short time optimal control problems.   
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In continuous time, Bellman’s equation leads to the Hamilton-Jacobi-Bellman partial differential 

equation (HJB PDE) characterization of the value function.  We consider 

  ),(),(),,;(),())(),,,;((max

),(),(),()),,;(,())(),,,;((max

),()),,;(,())(),,,;((max0

ytVysVyuytsxysVduuytxL

ytVysVysVuytsxsVduuytxL

ytVuytsxsVduuytxL

s

t

s

t

s

t














































.        (2.11) 

Dividing by (s-t), we have 

 
t

V
uxfytVtyL

t

V

dt

dx
ytVtyL

ts

ytVysV

ts

yuytsx
ysVduuytxL

ts

s

t








































 

),(),(),(max

),(),(max

),(),(),,;(
),())(),,,;((

1
max0 

,     (2.12) 

for the HJB-PDE 

  0),(),(max 



uxLVuxf

t

V

u
,    (2.13) 

with terminal time condition )(),( xxtV f  , Equation (2.13) is solved backward in time to 

determine the function V(t, x). The important observation, however, is that V is a means to an 

end rather than the desired quantity.  That is, the value u
*
 of u for which the maximum is attained 

is the maximizing control function: if we have computed the value function V for each time and 

possible state value, then 

 ),(),(maxarg),( uxLVuxfxtu
u

 .    (2.14) 
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The methods we employ in this project rely directly on the Bellman equation (2.10) to compute 

the value function before using (2.14) to extract the controller.  The algorithms use the algebraic 

device of max-plus arithmetic, which we define after considering stochastic problems.   

Stochastic control problems generally begin with a stochastic differential equation 

00 )(,)(),( xtXdWXdtuXfdX   ,     (2.15) 

in which W is a standard Brownian motion.  We define the cost functional 

  













 

ft

t

ftXdttutXLEtxuJ

0

))(())(),((),,( 00
,    (2.16) 

which is to be maximized over admissible controls, which are progressively measureable and 

satisfy 













 
ft

t

m

ff uEttuttUu

0

2

00 |],[:),( R .     (2.17) 

The Bellman equation for the value function in the stochastic case requires an expectation 

 




















 

s

t
stUu

uytsXsVduXLEytV )),,;(,())(),((max),(
),(

 ,   (2.18) 

in which V is the value function is once again the optimal objective: 

 ),,(max),( 00
),(

00
0

txuJtxV
fttUu

 .      (2.19) 

As in the deterministic case, the value function is usually characterized through the HJB PDE, 

which includes a diffusion term that arises from the Brownian perturbation to the dynamics.  

This equation is given by 

   ,0),,(),(),(),(),(),(max
),(
















ij

T

xx
u

tuxLxtVuxfxtVuxux
t

xtV
ji

       (2.20) 
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in which the maximization is over R
m

.  The optimal control is determined, as a function of the 

time and state variables, as the argument that attains the max in the HJB, or alternatively, 

piecewise as the argument that attains the max in the Bellman equation (2.18).   

As opposed to deterministic problems, discrete stochastic control problems arise in two distinct 

modeling forms.  The first is a difference equation model that is quite analogous to the 

deterministic model: 

 00 )()),(),(),(()1( xtXttutXftX   ,     (2.21) 

in which  denotes the plant noise process.  The objective functional to be maximized is 









 





))(())(),((),,(
1

0

0000 f

N

k

tXktuktXLEtxuJ  ,   (2.22) 

with the expectation added to (2.2).  The Bellman equation becomes 

   )))(),((,1(),(max),(
)(

tutXftVEuxLxtV
tu

 .    (2.23) 

We note here for completeness, and for future use within the max-plus computational context, 

that a second commonly used discrete time stochastic model is that of a controlled Markov chain.  

Markov chains operate with a state variable X, living in a discrete space, S, usually taken to be  

S = {1,2,3,…,N}.  The model is the transition matrix 

  uitXjtXuPij ,)(|)1(Pr)(  ,      (2.24) 

giving dynamics in terms of transition probabilities rather than the direct functional propagation 

of (2.21).  The cost function is still defined as in (2.22), but due to the expectation and distinct 

probabilistic structure the Bellman equation takes a different form: 









 


N

y

xy
tu

ytVPuxLxtV
1

)(
),1(),(max),( .     (2.23) 
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Having built up the background on the deterministic and stochastic structures of interest for our 

nonlinear control computations, we turn to the algebraic device of max-plus arithmetic. 

 

3.0 The Max-Plus Arithmetic 

The max-plus view of dynamic programming begins with some arithmetic definitions. We 

consider the extended real numbers augmented by   
RR : .  On this set, we define 

two operations,   and , by  

 

baba

baba



 ,max
.        (3.1) 

The inclusion of   is necessary to provide an additive identity or “zero” element:

  aaa  ,max .  The number 0 actually becomes the multiplicative identity or “one” 

element: aaa  00 .  The set 
R  together with these operations forms a commutative 

semi-ring. 

Within the context of our notation, the axioms of a semi-ring are that the operations and the set 

obey the following. For all a, b, c, we have 

 abba   

   cbacba  )(  

   cbacba  )(  

    cabacba  )( . 

Moreover, we require that  

 a unique additive identity  exists, as does a unique multiplicative identity e  

 the additive identity annihilates R under multiplication:  a . 

These properties are straightforward to establish in the max-plus arithmetic.  A difficulty arises 

because addition is idempotent. Since   aaaaa  ,max ,  the semi-ring cannot be extended 
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to a ring (or field):  the only idempotent ring is the zero ring.  Thus, we are unable to extend the 

set to obtain a max-plus version of subtraction.  This issue prevents us from using the 

well-developed functional analytic machinery of linear operators and operator semigroups on 

Banach or Hilbert spaces, as the scalar set is not a field.  As we shall see, the max-plus structure 

offers some interesting computational opportunities, but there are prices to be paid in its use. 

From the scalar addition and multiplication operations, we build standard linear algebraic 

objects, such as matrices and vectors.  If we consider an nn  array, A, of elements of 
R  and a 

column vector, x, of n elements of 
R , define the max-plus matrix-vector product  xAy   by  

    
jji

j
jji

n

j
i xAxAy 


,,

1
max .      (3.2) 

Similarly, we may define max-plus matrix multiplication and addition: 

       
jijijikjki

k
ji BABABABA ,,,,,, ,max,max  .   (3.3) 

Raising a matrix to a power, then, is repeated applications of multiplication.  Eigenvalue 

problems in the max-plus setting are given by 

 

  ikki
k

ii

xxA

xxA

xxA













,max

)( .       (3.4) 

Function spaces can be constructed as well.  In particular, we use the standard sets of functions 

on domains of interest for the dynamical systems we control.  We equip these sets with max-plus 

arithmetic in the range space: 

    )()()()},(),(max{)( xgxfxgfxgxfxgf  .   (3.5) 

The max-plus analytic and functional analytic concepts are also relevant.  For example, we may 

be interested in infinite sums and even integrals, which require replacing the max operation with 
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supremum.  We abuse the max notation by assuming the convention that max means sup when 

sup is needed.  For any set S, finite or infinite, we use the notation 

)(sup)(max sfsf
SsSs 

  .        (3.6) 

For bounded continuous functions on a compact domain, the max of course exists, while for 

bounded functions generally we need the supremum.  Max-plus Riemann sums take the form 

},)({max)(
11

ii
ni

ii

n

i
xsfxsf 


      (3.7) 

leading to the following definition of Riemann (and Lebesgue) integral: 

 )(max sff
Ss

S




 ,       (3.8) 

as the  term vanishes in the defining limit.  More generally, we may define a measure   on (a 

-algebra of sets in) S by the usual axioms, appropriately translated into max-plus arithmetic: 

  disjoint. pairwise are  when ),(sup)(

)()(

1
ii

i
i

i

AAAii

i





















   (3.9) 

For a max-plus   measure to have a density g,  we have )(sup)( xgA
Ax

 , and in this case we 

define the integral by 

  )()(max sgsffd
Ss

S






  .      (3.10) 

Another key issue in max-plus functional analysis is the approximation of functions. Finite 

difference and finite element methods are often used in the approximation of solutions of 

differential equations.  Finite elements will play a crucial role in our computational schemes, so 

we introduce the max-plus finite element expansion to approximate a function f: 
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 )(max)()(
1

xaxaxf kk
k

kk

N

k

N  


     (3.11) 

in which the basis functions k  are functions chosen for computational simplicity and 

approximation efficiency.  The coefficients a k are determined using max-plus analogs of 

standard finite element projections: 

  )()(max xfxa i
x

i   .      (3.12) 

This projection differs from the standard projection primarily due to the idempotent nature of the 

max-plus addition operation.  Before discussing the nature of this computation, we consider 

some finite element basis families.  In particular, we introduce three families of finite element 

types:  linear elements 

 iii xxcx )( ,       (3.13) 

quadratic elements 

 
2

)( iii xxcx  ,       (3.14) 

and Legendre elements 

xpx T

ii )( .                  (3.15) 

In the linear and quadratic elements, xi are the element nodes, and ci are scale parameters. These 

elements are completely analogous to traditional finite element linear splines. In the Legendre 

formulation, the elements are defined by the slopes pi. The Legendre elements are particularly 

interesting in that the Legendre transform  

 xpxfpf T

x
 )(max)(ˆ ,      (3.16) 

is the max-plus analog of the Fourier transform for convex functions.  The function f is 

reconstructed from its Legendre transform through the inverse transform 
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 xppfxf T

p
 )(ˆmax)( ,       (3.17) 

whose action is identical to the forward transform, leading to a max-plus spectral approximation 

type.  

Max-plus finite elements lead to a lower envelope type of approximation.  Figure (3.1) illustrates 

the linear and quadratic approximations of a simple continuous function. 

 

Figure 3.1 Linear and Quadratic Max-Plus Finite Element Approximations 

The Legendre  elements provide a lower envelope with supporting straight lines.  The process 

and resulting approximation are shown in Figure 3.2. 

 

Figure 3.2 The supporting lines and the resulting approximation of max-plus Legendre 

elements 
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Details of the max-plus arithmetic, its properties and applications, can be found in [BCOQ, 

CGQ, HOW, KM, L, LMS1, LMS2, Mc2].  Our interest in this seemingly abstract concept is its 

applicability for nonlinear control computation.  With the basic arithmetic and approximational 

tools in place, we return to the deterministic control problem. 

 

4.0 Section Nonlinear Control and The Max-Plus Algebra 

We begin with an examination of the discrete deterministic control problem (2.1) and (2.2), 

whose Bellman equation (2.4) we recall as  

  )))(),((,1(),(max),(
)(

tutxftVuxLxtV
tu

 ,    (4.1) 

The applicability of and interest in the max-plus algebra arise from the fact that (4.1) is a 

max-plus linear equation.  To establish this fact, we consider the operator 

 )),((),(max)( uyfuyLyA
u

  .      (4.2) 

We first note that  

 

   

 

),(

)),((),(max

)),((),(max)(

yAa

uyfuyLa

uyfauyLyaA

u

u













                  

so that scalar multiples pass through the operation.  Next, we see that 

 

   

 

    
  ),(

)),((),(max,)),((),(maxmax

))},((),()),,((),(max{max

))},(()),,((max{),(max)(

yAA

uyfuyLuyfuyL

uyfuyLuyfuyL

uyfuyfuyLyA

uu

u

u

















   

so that A is max-plus linear.  The Bellman equation becomes a discrete time linear dynamical 

system in the max-plus sense, with a max-plus operator exponential solution: 
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 ),(),( xtVAxtV f

tt f 
 .       (4.3) 

Likewise, the continuous time Bellman equation leads us to construct a family of linear operators 

 








 
s

t

st uytsxduuytxLyS )),,;(())(),,,;((max))((,  ,  (4.4) 

that propagate backward in time from s to t: the Bellman equation becomes 

).,()))(,((, ytVysVS st    Further, we note that, since f and L do not depend explicitly on time, S 

only depends on the time difference s – t.  We thus adjust our notation, using tsS   in place of  

.,stS  Computing the value function can be viewed as iteratively evaluating this operator:  

).))(,((),( ytVSyhtV h          (4.5) 

We establish that tsS   is a max-plus linear operator in a manner similar to the discrete time case: 

 

))(())((

)),,;(())(),,,;((max

,),,;(())(),,,;((maxmax

)),,;(())(),,,;((

),,,;(())(),,,;((maxmax

)),,;((),,,;((max))(),,,;((max))((

ySyS

uytsxduuytxL

uytsxduuytxL

uytsxduuytxL

uytsxduuytxL

uytsxuytsxduuytxLyS

tsts

s

t
u

s

t
u

s

t

s

t
u

s

t
u

ts































































































   

So that additivity is thus established.  Next, we examine 
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))((

)),,;(())(),,,;((max

)),,;(())(),,,;((max))((

ySa

uytsxduuytxLa

uytsxaduuytxLyaS

ts

s

t
u

s

t
u

ts





































     

so that scalar multiplicative factors commute with the operator. Thus tsS   is a max-plus linear 

operator, and the Bellman equation’s solution can be written as an operator exponential solution: 

 ),(),( xtVSxnhtV f

n

hf

 .      (4.6) 

One issue is of course the selection of the time step h.  Another is that the continuous state space 

requires a discretization as well.  Toward that end, we introduce a finite element expansion of the 

value function: 

  )()(max)()(),(
1

xtaxtaxtV kk
k

kk

N

k

N  


.   (4.6) 

Inserting the expansion into the Bellman operator, we have 

 

 

))((

)),,;(())(),,,;((maxmax

)),,;((max))(),,,;((max))(((

1

1

11

ySa

uytsxduuytxLa

uytsxaduuytxLyaS

itsi

N

i

i

s

t
u

i
Ni

ii
Ni

s

t
u

ii

N

i
ts









































   

so that the Bellman operator’s application to the basis becomes one key component.  A second is 

the projection of the result back onto the basis: 

)())((
11

ybySa ii

N

i
itsi

N

i
 





,      (4.7) 

or more precisely 
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)()())(()(),(
11

xtaxSsaxtV kk

N

k
ktsk

N

k

N  





.   (4.8) 

That is, just as in traditional finite elements, we seek a means of propagating the finite element 

expansion coefficients directly.  There are two primary approaches to this propagation.  The first, 

and simplest, is recommended by McEneaney [Mc2]: 

)()( saBta  ,                    (4.9) 

in which the matrix B is defined by 

 ))(()(max xSxB jtsi
x

ij   .      (4.10) 

Note that this form applies (3.12) to project )( jtsS   onto the basis.   

An alternative uses a max-plus variant of mixed finite elements.  That is, the variational 

formulation  

)}())(,(({max)}(),({max , yysVSyytV st
yy

      (4.11) 

is solved using distinct basis and test functions.  We let M ,,1   denote the finite set of test 

functions, with N ,,1   denoting the basis as above.  We expand the value functions at the 

two time steps in terms of the basis: 

 

 )()(max)()(),(

)()(max)()(),(

1

1

xsaxsaxsV

xtaxtaxtV

kk
k

kk

N

k

N

kk
k

kk

N

k

N












,    (4.12) 

and we insert these expansions into the variational form (4.11): 

   )}())(({max)(max)}({max)(max , yySsayta ikst
y

k
k

ik
y

k
k

  ,      (4.13) 
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which is a max-plus analog of the traditional finite element form Ma(t) = Ka(s)  with mass 

matrix and stiffness matrix K.  In general, the max-plus mass matrix cannot be inverted, but a 

maximal subsolution exists: 

  }{min#

iij
i

j bMbM        (4.14) 

leading to a max-plus iteration of the form 

  )}())(({max)(max)}()({maxmin)( , yySsayyta ikst
y

k
k

ij
yi

j     (4.15) 

a slightly more involved but more efficient (in terms of basis size) computation.  The test-basis 

estimation produces an upper/lower envelope of the approximated function, as illustrated in 

Figure 4.1. 

 

Figure 4.1 Mixed finite element test and basis functions trapping a function to be 

approximated 

Two final issues to be addressed prior to computational implementation: the computation of the 

Bellman operator and the determination of the optimal control.  The Bellman operator, we recall, 

is 









 
h

h uyhxduuytxLyS
0

)),,0;(())(),,,;((max))((  ,    (4.16) 
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which requires maximization over control functions on the interval [0, h] as well as solution of 

the differential equation ),( uxfx  .  Analytic expressions will not be available in general, so 

we need to approximate the optimization and integration. 

A first, simplest approach is to assume h is sufficiently small that we may approximate the 

control as constant, the running cost integrand as constant, and the dynamics with one step of an 

Euler integration.  This leads to the approximation 

  )),((),(max))((0 uyhfyuyhLyS
u

h   .     (4.17) 

A slightly better approximation involves a trapezoid approximation to the integral: 

  








 )),(()),,((),(
2

max))((1 uyhfyuuyhfyLuyL
h

yS
u

h  .   (4.18) 

Both of these operator approximations involve maximization over a scalar control value, which 

is applied as a constant over a short time.  A further refinement involves approximating with a 

control that changes linearly over the short time interval.  The operator approximation is 

  








 )),(()),,((),(
2

max))((
,

1 uyhfyvuyhfyLuyL
h

yS
vu

h  .    (4.19)  

Finer approximations still can be had by dividing the interval [0, h] into subintervals.  

More involved approximations divide the time interval [0, h] into subintervals.  We may use 

piecewise linear controls, higher order integration techniques on the running cost, and higher 

order approximations to the differential equation solution. 

To compute the optimal control from the value function, we have found two methods that work 

efficiently and effectively.  The first uses the maximizing control value from the Bellman 

operator computation: 

 








 )),(,()),,((),(
2

maxarg),( uyhfyhtVuuyhfyLuyL
h

tyu N

u
. (4.20) 
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The second plugs the value function into the Hamilton-Jacobi equation:  

  ),(),(maxarg),( uyfVuyLtyu N

u


.     (4.21) 

Either (4.20) or (4.21) can be used to extract the controller from the value function.  We note, 

however, that the “scalloping” of the max-plus approximate value function, as illustrated in 

Figures 3.1 and 4.1, can have a strong impact when differentiated in (4.20). Some amount of 

spatial filtering may be applied to smooth the value prior to computing its gradient: that is, we 

use (4.21) in conjunction with a mollifying convolution filter: 

 
D

NN dyyxtWytVxtV ),(),(),( .     (4.22) 

 

5.0 A Max-Plus Approach to Stochastic Control 

Recall the controlled stochastic differential equation 

00 )(,)(),( xtXdWXdtuXfdX   ,      (5.1) 

with objective functional 














 

ft

t

ftXdttutXLEtxuJ

0

))(())(),((),,( 00
,     (5.2) 

which is to be maximized over admissible controls.  The dynamic programming propagation 

operator in the stochastic case takes the form 





















 

s

t

ts uytsXduXgES )),,;(()(),((max)(,  ,   (5.3) 

and the difficulty is that this operator is not max-plus linear due to the expectation.  While scalar 

multiplication (addition in traditional arithmetic) factors through the expectation: 
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   
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max-plus addition (maximization) is not respected by expectation: 

   

.)()()()(

)()(,)()(max

)()(),(max)()()(
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The lack of linearity prohibits direct application of the max-plus exponential solution operator. 

We may treat stochastic problems as nonlinear, or we may reconsider our definition of 

stochasticity. 

Considering stochastic problems as max-plus nonlinear, we may find some computational 

efficiencies through the use of distributivity.  Defining )},2,2(),1,2(),2,1(),1,1{(},2,1{  IJI  we 

note that 

     

       

 
i

I
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a
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,

2
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,

2
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1
2,21,22,11,1

21 









. 

More generally, when N = {1,2,…,n}, M = {1,2,…,n}, and JM = the set of all ordered n-tuples of 

elements of M, then 

    
i

Mn

ji

n

iJjj
ji

m

j

n

i
aa ,

1),,(
,

11 1 



.     (5.4) 

Note that the number of summands has increased dramatically on the right side of the equality.  

This distributive property is generalized further in the following result. 
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Theorem 1.  Suppose that W and Z are separable metric spaces.  Suppose that P is a finite 

Borel measure on W.   Suppose that h is a measureable function on W x Z satisfying the 

following condition: for every  > 0 and every Ww ,  there exists a  > 0 such that 

)('and,),'(),( wBwZzzwhzwh   . 

Then,  





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ZWMfZz

wdPwfwhwdPzwh ),())(,(sup)(),(sup
),(

  (5.5) 

in which M(W, Z) denotes the set of Borel measureable functions mapping W to Z.   

To apply this result, we develop max-plus finite element approximations to the Bellman 

equations. 
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Applying Theorem 1, we have 
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in which the distributivity property of the theorem involves the set of random variables taking 

values in the set {1,2, …, N} for the interchange of expectation and maximization order.  This 

propagation is then inserted into the variational form 
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Expanding the one-time-step-back value function in terms of the basis leads to 
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providing for the temporal propagation of the coefficients of the finite element expansion. This 

time-stepper remains a nonlinear operation, as we cannot move the basis expansion of the value 

function through the propagator S. 

An alternate, more efficient approach to stochasticity uses a max-plus definition of probability.  

A max-plus probability space is a triplet (,F,Q) of a set  called the sample space, a  -field F 

of subsets of , and a max-plus probability measure Q that satisfies the following: 
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These criteria are completely analogous to the standard definition of probability measures in 

“plus-times” arithmetic.  The inclusion of the constraint Q() = 0 makes the measures of (3.9) 

into probability measures. Note that max-plus probabilities have some unintuitive properties. For 

example,   

  .0)(),(max AQAQ c  

For the probability measure Q to have a density q, we must have  
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Max-plus probabilities can be derived from standard probability measures through a large 

deviations approach.  Max-plus arithmetic can be viewed as a limit of log-plus arithmetic: 
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Log-plus operations enter into probabilistic modeling in the following way. We consider a family 

of probability measures (P) on the measureable space (,F). If this family obeys a large 

deviation principle, then the limit  

)(loglim)(
0

APAQ 





 ,       (5.10) 

exists and is a max-plus probability measure. As a simple example, consider a family of 

Gaussian densities  











2

2

1
exp

2

1
)( 


 xxp ,      (5.11) 

with vanishing variance   0. Then the measure Q is characterized by the quadratic density 

2

2

1
)(  xxq  .       (5.12) 

This process gives us a method of constructing max-plus measures from exponential density 

families. 

Expectations in max-plus probability are defined by the following: 
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with which we can define objective functions for max-plus stochastic control problems. 

One challenge here is that max-plus probability requires a minimizing structure for the control 

problem.  That is, we redefine the running cost and terminal costs to be their negatives: 
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for a control problem of minimizing 



 

 

26 

 

 




































f

f

t

t

f

t

t

f

ptXdttutXL

tXdttutXLEtxuJ

0

0

)())((
~

))(),((
~

max

))((
~

))(),((
~

),,( 00




,   (5.15) 

so that the value function becomes 
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This formulation leads to a game, in which the control designer is playing against the stochastic 

player.   

The relationship between max-plus expectation (and hence objective functionals) and traditional 

stochastic expectation can be examined within the framework of large deviations and risk 

sensitive control, as (5.10) leads to 
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The max-plus expectation is thus a risk sensitive limiting objective functional. 

The value function for the max-plus expected objective minimization is given by 
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Expanding V in terms of a max-plus basis leads to 
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Here we define  
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for X(t) = y, as the short-time expected cost propagation.  Then we have 
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6.0 Max-Plus Algebra and Hardware/Software Considerations 

One of the more intriguing aspects of the max-plus, min-plus, and min-max arithmetic structures 

is the potential to instantiate operations in hardware.  Modern CPUs are designed for the efficient 

(vectorized) computation of multiplication and division, and we seek to leverage the concept for 

the efficient computation of max-plus operations.   

Toward that end, we have developed, coded, and tested prototype Field Programmable Gate 

Array (FPGA) implementations of max-plus matrix-vector multiplication (Max-Plus MVM), 

which we refer to as our Max-Plus MVM FPGA.  Max-Plus MVM is a mathematical 

computation of max-plus matrix-vector multiplication of the form: 

T

n aBa 0        (6.1) 

in which the coefficients of the max-plus finite element expansion, or the discrete values of a 

value function, are iterated temporally according to the appropriately discretized Bellman 
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equation.  More specifically for a user provided matrix B and vector aT Max-Plus MVM FPGA 

carries out Max-Plus MVM iteration n times on the FPGA board till either a0 is converged or the 

number of iterations n reaches to a predetermined number N. 

Tempest's Max-Plus MVM FPGA system is composed of a Xilinx ML605 board (the Board), 

onboard circuit design and interface software suite.  The Board features a Xilinx Virtex-6 

XC6VLX240T-1FFG1156 FPGA, and it is connected to a PC via an Ethernet 1000BASE-T 

cable.  Interface with the Board is through Matlab.  The software package is composed of set of 

Matlab and C codes.  The package is developed and tested on a host computer with the Linux-

based Ubuntu operating system.  Much of the discussion of prior sections focused on the 

mathematical aspects of the host computer tasks, all of which boil down to two primary jobs: 

construction of the max-plus iteration matrices, and conversion of the value function into a 

controller.  These tasks are essentially designing the input for and processing the output of the 

coprocessing subsystem.  The prototype design is summarized in following diagram. 

 

Figure 6.1 Concept block diagram Tempest's Max-Plus MVM FPGA 

6.1 The Xilinx FPGA ML605.   

FPGAs are two dimensional arrays of configurable logic blocks. Programmable interconnects 

and block configurability provide an extremely flexible computing platform. The array structure 

offers natural parallelism.  Of course the difficulty with this level of flexibility is in the 

programming, which must take into account data flow and timing through the array.   

The Xilinx ML605 board, seen in Figure 6.2, is a cost effective host of the FPGA device that met 

our computational and interface needs.   



 

 

29 

 

 

 

Figure 6.2 Xilinx ML605 FPGA board 

The board comes with gigabit Ethernet, DDR3 memory controller and interface, DVI, system 

monitor, serial transceiver integration, PCI express Gen 1 and 2, and more.  Xilinx provides 

Xilinx Intellectual Property (Xilinx-IP) Cores that are functions highly optimized for Xilinx 

FPGAs. 

There are two communication choices provided by the Board, PCI Express and gigabit Ethernet 

connections.  The PCIe delivers up to 16 gigabit speed and requires a PC with a PCIe slot.  To 

accelerate development, testing, and validation, we employed an existing 1 gigabit Ethernet 

communication channel and driver for the board to talk to the host PC. 

Xilinx provides memory interfacing Xilinx-IP core to access the DDR3 SDRAM, 

MT4JSF6464HY-1G1B1 on the Board.  The prototype utilizes DDR3 for large size 

computations.    

The Board contains a physical Ethernet chip, 88E1111 RCJ1 that is accessed with Xilinx-IP core 

for Ethernet.   It has specialized peripherals including an LCD, LEDs, dip switches and push 

buttons.  We use only one push button for resetting the FPGA board in Max-Plus MVM FPGA 

system.          

We utilize the built-in 32MB BPI flash as storage for the Tempest Max-Plus MVM FPGA circuit 

design.  When the Board is initializing, the Max-Plus MVM design will be loaded automatically 

to the FPGA.   

The details of the ML605 are provided in Figure 6.3. 
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Figure 6.3 Xilinx ML605 FPGA components 

The actual FPGA is the Virtex-6 chip.  In this chip resides a column-oriented array of 6-input 

lookup table units (LUTs), multiply-and-add (MUX) units, sometimes referred to as DSPs in the 

FPGA literature, as well as local RAM and communication circuits.  The LUTs provide the 

programming flexibility to instantiate all types of basic logic operations. The fine structure of the 

Virtex 6 array is illustrated in Figure 6.4. 

Design of FPGA code involves literal flow of data through the circuit as operations are applied 

by the LUT and MUX units.  Synchronizing the data flow through memory and communication 

management is a key issue in FPGA implementation. 
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Figure 6.4 Look-up table (LUT) cells, multiply-add (MUX) cells, and fabric structure 

   

6.2 The max-plus concept in FPGA 

The base algorithm for solving dynamic programming problems is the max-plus iteration 

  jij
j

i aBa

aBa





max

,
,       (6.2) 

which is a parallel set of maximizations. This process must be iterated a number of times to 

derive the value function and controller.  Each row of the matrix B can be simultaneously 

applied to the vector a through the max-plus inner product, a process that produces the individual 

components of the updated vector.  This vector must then be assembled, so that copies can be 

passed to the parallel inner product operations.   
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Figure 6.5 First row of max-plus matrix multiply 

For each row of the B matrix, the tournament illustrated in Figure 6.5 must be processed.  

Parallelism exists at multiple layers:  row-wise in B, column-wise in the addition of the vector a, 

with a diminishing level of parallelism as the tournament winners propagate.  Efficiency of the 

FPGA processing relies heavily on leveraging the problem structure and getting data to the 

appropriate units at the appropriate times. We pipeline these row-wise inner products using the 

parallel nature of the FPGA. 

The FPGA MVM has been constructed in VHDL to capitalize on the structure of Figure 6.5.  

The tournament is executed with a sequence of max and add operations, in a circuit structure 

illustrated in Figure 6.6.  The index swapping stands out in this architecture.  As a Matlab or C 

code, this algorithm is relatively simple to instantiate.  When examined in VHDL, getting 

memory address signals that jump between registers is a complicated task that adds to VHDL-to-

circuit compilation difficulties given the timing constraints. The problem is one of moving data 

back upstream in the physical flow through the circuit.  

While this process seems straightforward, we note that communication with the DDR3 memory 

be addressed all the way down into the pipelined math core. The fundamental concept of DDR3 

is that it has variable latencies due to the necessity to refresh its contents periodically as well as 

delays necessary for its own pipelines to function. This concept of wait permeates every decision 

in the Iteration Core. 
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Figure 6.6 Max-Plus Iteration Core organization 

The architecture of the full system is of course dependent on the algorithm chosen for the 

max-plus matrix iteration, but in the context of a tool, the FPGA solution needs to interface with 

other new and preexisting MATLAB code sets, requiring some MEX writing to connect the C 

and FPGA with the user interface. That is, we need multiple components: several pieces of code 

run on the host computer to accept user input, to conduct some complex computations more 

suited to standard processors to construct the B matrix, and provide graphical output and data 

storage for controllers.  Thus, the software/hardware partnership involves a number of 

host/FPGA design and load balancing considerations.  

 Interfacing the PC with the FPGA is a complex task in its own right. The PC interface needs to 

communicate data to the DDR3 memory on board the Xilinx platform, and the VHDL circuit 

needs to access the DDR3 memory.  AVHDL state machine is necessary to manage the host 

computer transfers, DDR3 memory communication with the max-plus core, and the FPGA RAM 

operation. All of these requirements together comprise the circuit architecture developed below 

in Figure 6.7. 
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Figure 6.7 Architecture of the full host-coprocessor system 

The finite-state machine controller includes the following basic processes: Write to Memory, 

Read From Memory, Start Max-Plus Processing, and Poll Max-Plus Status.   

The primary challenge in creating the FPGA MVM is data transfer, access, and timing with the 

DDR3.  The use of DDR3 on board the Xilinx platform is crucial for efficient computation due 

to the limited size of the FPGA internal RAM.  Timing within the contest of DDR3-FPGA 

collaboration constrains us to under-clock to 250MHz, when 300-400MHz is theoretically 

possible.  

6.3 Running the system 

The following steps are a guide to connecting the ML605 and performing calculations on the 

Max-Plus MVM FPGA board. 

1. Make sure all switches, SW1, SW2 and GPIO DIP SW. 



 

 

35 

 

 

 

Switches SW1 and SW2 are next to each other: 

SW1(1:4) = XXX0   

SW2(1:6) = 010100 

The X means either 0 or 1.  The first position 

of switches starts from right in the pictures.   

 

 

 

 

 

GPIO DIP SW(1:8) = 1XXXXXXX 

Here the first position of the switch is at the  

top in the picture. 
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2. Connect Ethernet cable to PC and to ML605. 

 

3. Connect power supply to ML605.  The power connection is located on top, towards the 

right of the board. 

 

4. Turn on the power to the ML605.   

 



 

 

37 

 

 

The LCD will initially have black boxes across the top. 

 

5. Wait for the board to load the max-plus design from the onboard BPI flash into the FPGA 

(approximately 1 minute).  When the FPGA has been loaded the LCD will be cleared. 

 

6. At this point, press the reset button SW8, 
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The LCD should be completely filled with two rows of numbers (possibly, but not 

necessarily, all zeros).  If it is not, press the reset button again.  (It may take several tries 

to achieve a full two rows of numbers.)  

 

7. The Max-Plus MVM FPGA is now ready to communicate with the PC.  The PC and 

Board IP addresses must be set to 1.2.3.9 and 1.2.3.5 respectively.  At Linux prompt type 

the following commands to set them.  (Enter the password associated with the account on 

this PC if prompted to do so.) 

$ sudo ifconfig eth0 1.2.3.9 netmask 255.255.255.0 

$ sudo arp -s 1.2.3.5 00:0a:35:11:22:33 

Alternatively, at the Matlab prompt run the following script: 

>> Set_IP_addresses 

Once communications have been established, there should be other numbers displayed on 

the LCD besides all zeros.  

The FPGA is now ready for use. 

6.4 Max-Plus FPGA MVM computation 

The user must create a matrix B, vector aT and number of iterations N.  A parameter must be 

provided by the user to indicate whether Max-Plus MVM solver will run N iterations regardless 

if the convergence criterion is met before iteration reaches to N.   The Max-Plus MVM is 

considered converged if the change in results from two consecutive iterations is 0. 
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The user also must check if the size of matrix B is multiple of 32 (if the size is smaller than 256) 

or multiple of 128 (if the size is bigger than 256).    If the condition is not met, the user must 

expand the matrix B to the size that is multiple of 32 or 128 by padding the matrix with -inf, the 

max-plus zero.  A Matlab function is provided to do padding. 

Matlab is used to interface between the host PC and the Board.  The following steps are a guide 

to carry out Max-Plus MVM T
N aBa 0  on the FPGA board. 

1. Set up the Max-Plus MVM FPGA System as described above. 

2. Create or load matrix B and vector aT in Matlab session. 

3. Check if the number of elements in aT is the same as number of columns of matrix B, 

and if matrix B is square. 

4. Check the size of matrix B.  If it is not a multiple of 32 (if the size is smaller than 256) or 

multiple of 128 (if the size is bigger than 256), run the Matlab script 

>> [Bpad, aTpad] = Pad_data(B, aT(:), m32_128); 

where m32_128 is either 32 or 128, a user provided parameter.  The use of aT(:) (instead 

of aT) is to guarantee the column-vector convention. 

5. Run the Max-Plus MVM FPGA controller function, maxPlusLoopFPGA7.mexglx: 

>> a0pad = maxPlusLoopFPGA7(Bpad, aTpad, N); 

The controller function terminates either number of iterations reaches to N or when a0pad 

(a0 padded with –inf ) converges, whichever comes first.  An alternative controller 

function, as maxPlusLoopFPGA6(.mexglx) is provided if a user does not want an earlier 

termination.  The function call is the same. 

6. Recover a0 from a0pad.  In step 5, we assumed the user padded the original matrix B and 

vector aT.  Therefore the resulting vector a0pad is a padded vector.  The solution to the 

problem should have the same size aT.  Recovering a0 from a0pad is done easily in 

Matlab: 

>> a0 = a0pad(size(aT)); 
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The example is provided through a Matlab function, MaxPlus_FPGA_Example.m (hereafter 

referred to as the example), serving as a jumping off point for a user.  The B matrix in the 

example is 8064 by 8064 with entry B(i,j) = -(x(i) + y(j))2 – x(i)2, x = (-4032, -4031, …, 4031) 

and y =  (-4032, -4031, …, 4031).  The vector aT contains 8064 zeros.  We set number of 

iterations N = 1000.  In this example, the function maxPlusLoopFPGA7 is used as controller 

function.  The example code can be used a driver with the matrix B and vector aT replaced by 

data of interests. The Matlab script is listed below, it illustrates the steps required to perform an 

iterated max-plus matrix vector multiplication using this Max-Plus MVM system: 

% 
% Establish communication with Max-Plus MVM FPGA board 
% 
Set_IP_addresses; 

  
% 
% Set parameters 
% 
M=8064;                % B matrix size MxM and aT vector size Mx1 
N=1000;                % Number of iterations to work towards solution 
early_term=1;          % Terminate iterations if solution has converged 
                       %    before end of iterations. 

  
% 
% Create B matrix 
% 
disp(['Creating ', num2str(M), ' x ', num2str(M), ' matrix and ',...  

       num2str(M), ' x 1 vector.']); 
 

[x y] = ndgrid(-M/2:M/2-1,-M/2:M/2-1); 
B     = -(x+y).^2-x.^2; 

  
 

% 
% Create aT vector 
% 
aT = zeros(M,1); 

  
% 
% Add padding if M not multiple of 128 (or, at least, 32) 
% 
disp(['Checking matrix and vector to add padding if necessary.']) 
 

[Bpad aTpad] = Pad_data(B, aT, 128); 
clear B aT;           % B and aT variables are no longer needed so  

                      % free up the memory 
% 
% Run computations 
%  
disp(['Sending matrix to FPGA board and running computations.']); 
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tic; 
if early_term == 1 
    a0pad = maxPlusLoopFPGA7(Bpad,aTpad,N); 
else 
    a0pad = maxPlusLoopFPGA6(Bpad,aTpad,N); 
end 
etime = toc; 
disp(['FPGA process elapsed time is ', num2str(etime), ' seconds.']); 
% 
% Remove any padding that may have been added prior to computations 
% 
a0 = a0pad(1:M,1); 

 

The following is output from running the example.  Note that there were a few “data (byte) 

problem only: -1 of 1024” messages before it settled down and processing began.  This is not 

abnormal.  This solution converged at iteration 15.  If it was allowed to run through the 1000 

iterations it would have taken more than three times longer. 

Setting computer IP address to 1.2.3.9. 

Setting FPGA IP address to 1.2.3.5. 

Creating 8064 x 8064 matrix and 8064 x 1 vector. 

Checking matrix and vector to add padding if necessary. 

Sending matrix to FPGA board and running computations. 

N:8064,I:1000,B11:-81285120.000000,Aold1:0.000000 

enter maxPlus 

setting up send to FPGA socket 

setting up recieve from FPGA socket 

masking 0 bits for percentDeltaAlert 

sending Aold 

data (byte) problem only: -1 of 1024 

sending B 

data (byte) problem only: -1 of 1024 

sending Start Processing 

masking 0 bits for percentDeltaAlert 

sending Poll Processing 

start poll 

current poll : iteration = 65535  i = 0  j = 6792  latency = 0  converged = 65535 

current poll : iteration = 0  i = 616  j = 7928  latency = 0  converged = 65535 

current poll : iteration = 0  i = 1231  j = 7312  latency = 0  converged = 65535 

… 

current poll : iteration = 15  i = 7470  j = 4880  latency = 0  converged = 65535 

current poll : iteration = 16  i = 21  j = 5736  latency = 0  converged = 15 

Converged at 15, stopping early  

current poll : iteration = 16  i = 637  j = 704  latency = 0  converged = 15 

… 

current poll : iteration = 17  i = 7947  j = 3368  latency = 0  converged = 15 
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current poll : iteration = 19  i = 0  j = 0  latency = 0  converged = 15 

Iterations terminated. 

sending read Anew 

first Anew:-26304421.000000 

FPGA process elapsed time is 49.4027 seconds. 

For a size of 8,064 problem, it took the Board 15 iterations and total of 49.4 seconds.  

When processing is complete shut down as follows: 

1. Shut down Matlab so that it does not continue to communicate with the board.   

2. Turn off the power to the ML605.Detach the power cable. 

3. Detach the Ethernet cable. 

4. Return the board to the static-resistant bag.  Store the board in this bag when not in use. 

6.5 Timing results 

We have run an extensive suite of test problems through the FPGA implementation at 250Mhz 

and 311Mhz. The latter represents the fastest rate at which we could reliably drive the board.  

We compared this code to a Matlab implementation in which the max-plus matrix iteration was 

implemented in C and accessed through Matlab’s MEX interface.  This represents our most 

efficient purely-host-processor implementation.  Figure 6.8 shows the results of these tests in 

terms of the speed per single time step of the max-plus dynamic programming computation, as 

instantiated in the max-plus arithmetic operation.  One can see that the FPGA board begins to 

offer significant time savings for larger problems.  Since it is common for higher dimensional 

problems to require thousands of basis elements, we see marked improvements to be had with 

this hardware/software partnership. 

There are clear advantages to the parallelism and hardware-instantiated max-plus arithmetic that 

the FPGA provides.  The prototype still contains a number of opportunities for improvement, but 

we have developed a design that is protectable as intellectual property and offers a direct path to 

ASIC development and are seeking Phase III partnerships for such. 
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 Figure 6.8 Comparison of host processor (MEX) and FPGA max-plus matrix iteration 

speed 

 

7.0 The Linear Quadratic Regulator 

The linear-quadratic regulator (LQR) is among the best known optimal control problems.  With a 

well-understood solution that is easily computable, the LQR problem provides an excellent 

testing platform. 

The linear dynamical system  

BuAxx  ,        (7.1) 

in which x = x(t) is the n-dimensional system state, u = u(t) is the m-dimensional system state, 

and A and B are appropriately dimensioned matrices, defines the LQR dynamics.  The quadratic 

cost is given by 
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in which we use a minus for maximization purposes. 

The value function is given by the quadratic form 

,)(),( xtPxtxV T        (7.3) 

in which P satisfies the well-known Riccati differential equation 
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and the optimal control and state are given by 
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To develop some analytical insight into the max-plus time stepping, we consider an LQR 

formulation with a terminal quadratic cost over a short time interval (t, t+h): 
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to which we will apply max-plus computation using quadratic basis elements.  The resulting 

value function requires two matrices: 
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The optimal control is given by  for the subproblem (7.6), and the value function is given by 
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By considering the LQR problem, then, we can test the accuracy of approximations to computing 

the B matrix and the M matrix from the mixed finite element method as well as those for 

computing the value function and optimal control. 
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As a simple illustrative problem for validating computations, we consider a 1-d problem with 

A=B=Q=R=1. We take the final time of 10.  Figure 7.1 shows the analytically computed B and M 

matrices of Equations (4.10) and (4.13) for basis and test function grids of size 128 on the state 

space range of [-2, 2], while Figure 7.2 shows the numerically computed matrices. 

 

 Figure 7.1 Analytically computed B and M matrices for a 1-D LQR problem: left panel 

shows the B matrix and right panel shows the M matrix 

 

Figure 7.2 Numerically computed B and M matrices for a 1-D LQR problem: left panel 

shows the B matrix and right panel shows the M matrix 

Next, we compare the analytically computed value function (based on the Riccati solution of 

Equations 7.6-7.7) with that determined by the max-plus finite element computation in Figure 

7.3.  
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Figure 7.3 Analytic and numeric value functions, together with their difference 

Two heat maps are given, for a coarse grid of x = 0.2, on the left, and a finer grid of x = 0.04, 

on the right.  Numerical experience suggests that a shape parameter that is 4-8 times the Riccati 

matrix will work quite well. 

In Figure 7.4, the upper envelope highlighted with a white curve gives c as equal to the Riccati 

solution across the 41 LQR problems.  One can easily see that a shape parameter smaller that the 
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Riccati solution produces large error.  This result is somewhat intuitive, as the quadratic finite 

elements are too “wide” to fit “inside” the value function when c is too small.  One can also see 

that the area of small error is much more forgiving in the case of the finer grid. 

 

Figure 7.4 Approximation error heat maps for coarse and fine grid approximations 

 

8.0 Perimeter Patrol Planning – An Example 

The use of and interest in unmanned air vehicles (UAVs) as important components in military 

operations continues to grow.  The US Air Force’s UAV plan [DS2047] indicates a goal of 

moving from “man in the loop” to “man on the loop,” requiring a fairly high level of autonomous 

operation.  Significant improvements in autonomy are necessary to achieve this ambitious 

program, including appropriate concepts of operation, UAV design, computational algorithms, 

communications, and human/machine interfaces. Of great interest is pushing the envelope of 

current capability to allow unmanned autonomous systems to make time-critical decisions 

without the need for human oversight or control.   

Such levels of autonomy for UAVs are a serious challenge for computational technology.  In 

addition to the complexity of algorithms needed to make decisions computationally using 

battlespace feedback in the presence of uncertainty, creating autonomous systems that work well 

with men on the loop is a significant challenge. 

Humans tend to make decisions in a manner that is quite different from computational systems, 

leading to issues of trust [Ke1].  Generally this trust problem arises from the human’s inability to 

understand why the algorithm selected the approach that it did.  The computational choice 
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appears as nothing more than an authoritative pronouncement, and the operator has no means of 

assessing its reliability or effectiveness a priori.   

Among the more promising avenues to increased autonomy are mission planning problems that 

balance the strengths and weaknesses of autonomous computationally driven task components 

and man on the loop human decision making.  Assigning tasks to the autonomy that can be 

understood, at least qualitatively if not quantitatively, offers an approach with potential for 

success.    

Additional issues in autonomous UAV tasking involve computational and communication 

limitations for smaller, more cost-effective vehicles.  With the computational ability to identify 

and track targets in the battlespace without operator command requirements, UAVs could 

conduct a number of advanced intelligence and surveillance tasks at a high level of autonomy.  

Current systems do not have such capabilities, and humans must observe the visual data that 

streams from UAVs, detecting targets of interest and directing UAV paths. This concept of 

operations does little to relieve the human workload. 

There are, however, related concepts that allow certain levels of autonomy coupled with 

appropriate human operation.  One such approach, the Air Force Research Laboratory’s 

Cooperative Operations in UrbaN TERrain (COUNTER) project described in [GRCF, CHHDP], 

involves a networked group of unmanned ground sensors (UGSs). These UGSs are positioned in 

the battlespace at locations of interest (which we call stations), and they transmit alerts when 

they detect a potential target in their field of regard.  These sensors may be seismic, chemical, or 

some other relatively inexpensive and simple technology.  When an UGS puts an alert onto the 

network, the UAVs can then travel to and inspect the station by capturing video.  Depending on 

the capabilities of the UAV and the network, the video may be transmitted via the network or 

delivered physically to a human for examination. The COUNTER subproblem we consider is 

one of a collection of UGSs stationed around the perimeter of a protected area.  The UGSs 

generate alerts signaling a potential incursion attempt into the protected region. The UAVs patrol 

this perimeter, searching stations at which UGSs have generated alerts. This form of 

human/UAV collaboration balances nicely the abilities of computational autonomy and operator 
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intervention. The decisions of where to send and when to retask are handled by the automation, 

while the human focuses on the visual imagery to detect intrusions.    

8.1 Perimeter Patrol Problem Definition 

Our model begins with m UGSs and n UAVs. The UGSs are positioned at fixed locations on the 

perimeter of a protected region, which is modeled as a simple closed curve surrounding the area 

of interest.  The curve is assumed to be parameterized in polar coordinates    )2,0[,, pr   . 

The arrival rate of alarms follows a Poisson process with rate .  We assume that at any given 

time, at most one station can receive an alert. An alert arrival is equally likely to occur at any of 

the stations occupied by UGSs, leading to an effective individual arrival rate of  /m.  We model 

this process with indicator variables of alert occurrence. That is, we denote by Y(t) = (Y1(t), Y2(t), 

…, Ym(t)) the vector of alerts that occur at time t.  By assumption, at most one entry in the vector 

can be 1.  If all are zero, no alert occurs at time t. 

This perimeter patrol problem is illustrated in Figure 8.1.  UAVs follow the path around the area 

of interest, visiting UGS stations that generate alerts.  The circles denote UGSs, with the red 

filled circle denoting an alarmed state. The UAVs fly patrol along the perimeter. When a UAV 

arrives at an alarmed UGS, the UAV’s sensor is engaged so that it can investigate the UGS’s 

vicinity. 

 

Figure 8.1 Perimeter patrol illustration 
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An additional step in the modeling effort is the discretization of the continuous perimeter into 

N+1 discrete locations, 0, 1, …, N.  The distance between any two locations is computed taking 

into account the wrapping: 

 }.,min{),( jiNjijidist       (8.1) 

The stations, by which we mean the locations at which the UGSs reside, are denoted (g1,…,gm) 

 S={0,1,…,N}.  These are fixed problem parameters. The locations of the UAVs, denoted by  

V = (V1,...,Vn)  S, are state variables.  The dynamics for this component of the state are given by 

)()()( tutvhtv  .       (8.2) 

Here h denotes the time step required to move a UAV from one location in the state space to an 

adjacent location. The control variable u satisfies the constraint u  {-1, 0, 1}, in which -1 and 1 

denote movement to an adjacent location.  The control action u = 0 denotes a loiter move for the 

UAV, which is allowed only when the UAV is at a station vi(t) = gj for some j.  Additionally, we 

constrain the UAVs so that they only loiter at UGS positions that have generated alerts.  Thus, 

we need an additional state variable to keep up with the alert state. 

In [KPDC], a model of alerts involves a running indicator Ai(t) governed by the dynamic 

equation 
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The symbol v denotes Boolean “or.”  Note that the alarm state is zeroed out upon a loiter by one 

of the UAVs.  In addition the model of [KPDC] keeps up with the length of time each alert waits 

to be serviced.  We denote by Ti(t) the number of time steps an alert at station i has been waiting 

to be serviced by a UAV.  This state variable has dynamics 

  ,,1)()(min)( TtTtAhtT iii        (8.4) 

in which T  denotes the maximum wait time, another parameter to be specified.  Finally, we 

define a dwell state  
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   ))(1(1)()( tutdhtd  ,      (8.5) 

to keep up with the length of time the UAV spends at a given station. 

Taking the position, alert status, waiting times, and dwell times together as the system state x, we 

have a dynamical system that can be written as  

)),(),(),(()( tYtutxfhtx         (8.6)  

in which f encapsulated the dynamics, u is the control, and Y is the noise process.  With the 

dynamics specified, we turn to the control problem. 

The optimization posed in [KPDC] takes a quality of service approach.  The cost function 

implemented therein balances information gained by loitering against the waiting times of alerts. 

We define the objective functional J by 
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k khTkhukhdIEuJ  ,    (8.7) 

an infinite time horizon discounted reward structure.  In this cost functional, parameters  and  

denote the discount factor and penalty weight, respectively.  The function I(d) denotes the 

information obtained by loitering for d dwell periods, forming the reward component.  The 

penalty component (a negative reward or cost) is a scaled maximum waiting time: we seek a 

patrolling and dwelling strategy that avoids long waits.  

The information function is meant to model an operator’s ability to extract information from the 

data the UAV collects.  In order to task the UAVs autonomously, the UAV needs to have a 

model that describes what is gained by loitering.  The information model is described in detail in 

[CHHDP], treating the operator as a sensor with a confusion matrix with correct and false 

detection of threats and nuisances.  The Shannon information can be computed as a function of 

the number of dwells: 
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in which p denotes the a priori probability that an alert is a threat (not a nuisance),  PTR(d) 

denotes the dwell dependent conditional likelihood of recognizing an existing threat, and PNR(d) 

denotes the dwell dependent conditional likelihood of recognizing an existing nuisance.  The 

functions PTR and PNR both increase with d towards an asymptotic probability (that can be strictly 

less than one) so that there is a diminishing return for dwelling many times.  The graph of an 

example information function, following the parametric choices of [CHHDP], is illustrated in 

Figure 8.2. 

 

Figure 8.2 An example information gain function 

With the information function in hand, we may turn to the problem of stochastic control.  

Maximizing the discounted infinite horizon reward J over UAV control plans attempts to 

increase information gain from dwells against the waiting times of unvisited stations.  The 

infinite horizon discounted reward, coupled with bounded information function and wait times, 

leads to a time-independent value function and a full state feedback control. 

The dynamic programming equation for this problem is given by 
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in which the probabilities pk denote the probability of arrival state Yk, k = 1,2,…,m+1.  These 

probabilities are determined directly from the Poisson model of an event occurring with rate  

and being assigned randomly to one of the UGS stations.  The indices 1 through m denote an 

arrival at that station, and the index m+1 denotes no alert arrives in the time step. 

Note that the state space for this problem can become quite large.  With five UGSs stationed on 

the perimeter and a maximum wait time of 15 time steps, with 20 discrete spatial positions for a 

single UAV, the state space contains approximately 15
5
x20 or over 15 million states, without 

even considering the dwell time state variable. 

A leaner approach to optimization involves a different objective functional.  Instead of 

information gain, we seek to maximize the probability that no alert evades inspection.  Toward 

this end, we need some additional modeling to describe how an alarm is missed.  If an UGS 

triggers an alert, it means there was an intrusion detection.  Whether the intrusion was a threat or 

a nuisance, it must be investigated by the UAV.  The longer the alert waits to be serviced, the 

greater the chance that a triggering threat will escape, evading detection and inspection by the 

UAV. 

We model this process simply with a single step “dispersion” probability.  We assume that the 

entity triggering the alert becomes undetectable by the UAV with probability q.  The probability 

of a triggering entity remaining detectable for k time steps is (1 – q)
k
.  This probability captures 

the conditional likelihood that an existing alert is not missed. The full probability of not missing 

an alert is  
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which includes the dispersion probability for a station that is waiting and the probability of 

missing a detection during dwells. 
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We make an approximation at this point, in order to reduce the state space. The waiting-time 

state variable is very expensive to maintain from a computational perspective, so we approximate 

the dispersion term of the missed alarm probability with the following: 
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This rather coarse waiting time approximation is really an approximation of the last visit time by 

one of the UAVs.  The approximation has the effect on the optimization of keeping M small by 

reducing dwells or maintaining smaller distances between UAVs and UGSs.  The other terms, 

modeling the information gain from dwelling, tend to keep dwell time high, attaining a similar 

balancing objective to that of the previous cost structure.  The advantage to this approximation is 

that we no longer need to keep the waiting times as state variables, reducing the dimensionality 

dramatically. 

8.2 A Single UAV 

We begin with a comparison of our approach with that of [KPDC], in which (8.7) is optimized.  

We refer to this approach as the “Standard Solution” in the following discussion. In [KPDC], an 

alternative approach that approximates the standard solution with an aggregation scheme to 

reduce the number of states is considered, and we implement that approach as well, referring to it 

as “Aggregated Solution.” Here we treat a single UAV checking on four UGSs, with a perimeter 

discretized with 15 locations.  A maximum dwell, d = 5, and a maximum wait time, w = 15, are 

also used in [KPDC]. 

For comparison purposes, we must choose the max-plus probability parameters of missing alarm 

sources (q and p) in Equation (8.10).  Figure 8.3 suggests that the best values for the max-plus 

probability solution to be p = q = 0.6.  Our approach is denoted as “Max-Plus Probability 

Solution” in the following discussion. 

Note that multiple solutions tested are practically tied with each other. To break the tie, this 

process was repeated for the dual UAV problem, and the intersection of the best solutions was 

used. There were still ties, but without a more stringent performance criteria, like dwell time 
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distributions, the decision to use p = q = 0.6 was still somewhat arbitrary with respect to the 

given performance measures. 

 

Figure 8.3 Max-Plus Probability Solutions Parameter Sweep 

We first attempt to validate our implementation of [KPDC]. The Aggregated Solution is 

compared against the Standard Solution in Figure 8.4, for a sampling of initial states that index 

the x-axis.   

 

Figure 8.4 Aggregate Solution vs. Standard Solution 

As shown by [KPDC] the Aggregated Solution has similar performance to the standard solution.  

For problems where the Standard Solution is impractical the Aggregated Solution will be used as 

a baseline if possible.  
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With the optimized parameters, the Max-Plus Probability Solution is compared against the 

standard solution in Figure 8.5. It is clear that the Max-Plus Probability Solution has similar 

performance to the Standard Solution.  

 

Figure 8.5 Max-Plus Probability Solution vs. Standard Solution 

An important observable statistic is the dwell time. Since information is at the heart of the 

baseline optimality criterion, dwell time is a key component of the optimal reward.  

The Aggregated Solution is compared against the Standard Solution (see Figure 8.6).   The Max-

Plus Probability Solution is compared against the Standard Solution in Figure 8.7. 
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Figure 8.6 Aggregate Solution and Standard Solution Dwells 

 

Figure 8.7 Max-Plus Probability Solution and Standard Solution Dwells 

It should be noted for this problem that maximum dwell, d = 5, is optimal in the sense that the 

mean dwell time is converged for a sequence of standard solutions (see Figure 8.8).  Note how 

the dwell distribution does not change after d = 5. The baseline used here is the Aggregate 

Solution as the Standard Solution is already into millions of states. 
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Figure 8.8 Dwell Behavior, Left d=5 Right d=6. 

Wait times are also a crucial part of the problem.  Higher wait times mean increased likelihood 

of a missed intrusion.  While our max-plus model uses intrusion escape directly, the Standard 

Solution uses wait time penalty as a surrogate.  

The Aggregated Solution is compared against the Standard Solution in Figure 8.9.   

 

Figure 8.9 Aggregate Solution and Standard Solution Waits 

The Max-Plus Probability Solution is compared against the Standard Solution in Figure 8.10.  

The mean wait times are similar. Technically the distributions are measurably different; this is 

due to the idle behavior where the Standard Solution hovers between the two stations that are 

near each other, waiting for one of them to generate an alarm, whereas the Max-Plus Probability 
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Solution idles by traversing the entire perimeter (consistent with the different objective 

criterion). 

 

Figure 8.10 Max-Plus Probability Solution and Standard Solution Waits 

Dwell times and wait times are state variables that drives the size of the state space. We 

investigated the upper bound on these states in Figure 8.11 

 

Figure 8.11 Left panel shows the optimal cost of the Standard Solution for a sampling of 

initial states under a variety of dwell/wait time upper bounds.  Right panel shows cost as a 

function of the upper bounds on dwells (top right) and waits (bottom right) 

Figure 8.12 shows the standard cost criterion behavior of the max-plus controller under a variety 

of dwell upper bounds.  Since wait times are not a state in the max-plus formulation, the wait 

time upper bound is not relevant there. 
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Figure 8.12 Convergence of Max-Plus Probability Solutions on the Standard Solution’s 

performance measure 

8.3 Two UAVs 

The two UAV problem requires a significantly larger state space.  In order to solve the problem 

under the Standard Solution approach, the maximum dwell and a maximum wait time need to be 

selected. Using convergence testing of the mean performance measure over a sample of initial 

states, Figure 8.13 indicates that performance is stable near d = 5 and w = 3.  Note that these are 

the parameters that will be used in this section even though the Max-Plus Probability Solution 

converges with a different maximum dwell. 

 

Figure 8.13 Left panel shows the optimal cost of the Standard Solution for a sampling of 

initial states under a variety of dwell/wait time upper bounds.  Right panel shows cost as a 

function of the upper bounds on dwells (top right) and waits (bottom right) 
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Figure 8.14 shows the dependence of the cost functional on maximum dwell over a set of 

initialization states for those solutions. 

 

Figure 8.14 Dwell Dependence of Max-Plus Probability Solutions on the Standard 

Solution’s performance measure  

With respect to the performance measure dependence on dwell, an example of optimal maximum 

dwell time is clearly available in this problem. Recall the convergence of the max-plus 

probability solution with respect to dwell time. It was constrained to a maximum dwell of d = 5 

for the performance conclusions but Figure 8.15 allows the maximum wait and dwell to increase. 

 

Figure 8.15 Performance Stable with Dwell Behavior Changing Maximum Dwell and Wait 

Increasing left (d=5, w=3) to right (d=8, w=6) (top: Optimal Performance bottom: Dwells 

Histograms) 
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With the optimized parameters, the Max-Plus Probability Solution is compared against the 

Aggregated Solution in Figure 8.16, demonstrating comparable output. 

 

Figure 8.16 Max-Plus Probability Solution vs. Aggregate Solution 

The Max-Plus Probability Solution dwell times are compared to the Aggregate Solution in 

Figure 8.l7. 

 

Figure 8.17 Max-Plus Probability Solution and Aggregate Solution Dwells 

Likewise, Figure 8.18 compares the wait time distributions. 
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Figure 8.18 Max-Plus Probability Solution and Aggregate Solution Waits 

 

8.4 Three UAVs 

We now turn to a much larger problem, one with 30 discrete waypoint locations, 7 UGSs, and 3 

UAVs.   For such large size problem it is impractical to do much parametric testing directly.  

Since the baseline cannot be computed for the three-UAV problem, Figure 8.19 shows 

performance of only the Max-Plus Probability Solution. The third UAV is improving the 

maximum possible performance. Given its similarity for the single and dual UAV problems, this 

is likely close to optimal performance. 

 

Figure 8.19 Max-Plus Probability Solution Performance 
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For validation purposes, we implemented a standard dynamic programming alternative to the 

reduced-state objective function on which our Max-Plus Probability Solution is based.  Figure 

8.20 shows the results of simulating both controllers. 

 

Figure 8.20 Comparison of Integration Methods 

The performance of the alternative Max-Plus Probability Solution is comparable to that of the 

prior dynamic programming and state-aggregated dynamic programming approaches. The max-

plus probability solution has the added benefit that it uses fewer states and can therefore solve 

larger problems than the standard and state-aggregated dynamic programming approaches. The 

max-plus approach leads to computational efficiencies for this example stochastic control 

problem.  

9.0 Conclusions 

We have developed a prototype software package, coupled with a hardware computational 

accelerator, to compute optimal controllers for general nonlinear problems.  Our approach uses 

dynamic programming as the basic setting for optimization.  Max-plus linearity of the Bellman 

equation of dynamic programming leads to an algebraic computational technique that permits 

efficient computation.  Further benefits can be obtained by using FPGA hardware to build max-

plus circuits. 

We have also designed and developed a nonlinear controller for demanding perimeter patrol 

problems of interest to AFRL. 
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